Color is a critical design factor for web pages, affecting important factors such as viewer emotions and the overall trust and satisfaction of a website. Effective coloring requires design knowledge and expertise, but if this process could be automated through data-driven modeling, efficient exploration and alternative workflows would be possible. However, this direction remains underexplored due to the lack of a formalization of the web page colorization problem, datasets, and evaluation protocols. In this work, we propose a new dataset consisting of e-commerce mobile web pages in a tractable format, which are created by simplifying the pages and extracting canonical color styles with a common web browser. The web page colorization problem is then formalized as a task of estimating plausible color styles for a given web page content with a given hierarchical structure of the elements. We present several Transformer-based methods that are adapted to this task by prepending structural message passing to capture hierarchical relationships between elements. Experimental results, including a quantitative evaluation designed for this task, demonstrate the advantages of our methods over statistical and image colorization methods. The code is available at https://github.com/CyberAgentAILab/webcolor.
translated by 谷歌翻译
Human pose estimation, particularly in athletes, can help improve their performance. However, this estimation is difficult using existing methods, such as human annotation, if the subjects wear loose-fitting clothes such as ski/snowboard wears. This study developed a method for obtaining the ground truth data on two-dimensional (2D) poses of a human wearing loose-fitting clothes. This method uses fast-flushing light-emitting diodes (LEDs). The subjects were required to wear loose-fitting clothes and place the LED on the target joints. The LEDs were observed directly using a camera by selecting thin filmy loose-fitting clothes. The proposed method captures the scene at 240 fps by using a high-frame-rate camera and renders two 30 fps image sequences by extracting LED-on and -off frames. The temporal differences between the two video sequences can be ignored, considering the speed of human motion. The LED-on video was used to manually annotate the joints and thus obtain the ground truth data. Additionally, the LED-off video, equivalent to a standard video at 30 fps, confirmed the accuracy of existing machine learning-based methods and manual annotations. Experiments demonstrated that the proposed method can obtain ground truth data for standard RGB videos. Further, it was revealed that neither manual annotation nor the state-of-the-art pose estimator obtains the correct position of target joints.
translated by 谷歌翻译
Sampling-based model predictive control (MPC) can be applied to versatile robotic systems. However, the real-time control with it is a big challenge due to its unstable updates and poor convergence. This paper tackles this challenge with a novel derivation from reverse Kullback-Leibler divergence, which has a mode-seeking behavior and is likely to find one of the sub-optimal solutions early. With this derivation, a weighted maximum likelihood estimation with positive/negative weights is obtained, solving by mirror descent (MD) algorithm. While the negative weights eliminate unnecessary actions, that requires to develop a practical implementation that avoids the interference with positive/negative updates based on rejection sampling. In addition, although the convergence of MD can be accelerated with Nesterov's acceleration method, it is modified for the proposed MPC with a heuristic of a step size adaptive to the noise estimated in update amounts. In the real-time simulations, the proposed method can solve more tasks statistically than the conventional method and accomplish more complex tasks only with a CPU due to the improved acceleration. In addition, its applicability is also demonstrated in a variable impedance control of a force-driven mobile robot. https://youtu.be/D8bFMzct1XM
translated by 谷歌翻译
Robotic hands with soft surfaces can perform stable grasping, but the high friction of the soft surfaces makes it difficult to release objects, or to perform operations that require sliding. To solve this issue, we previously developed a contact area variable surface (CAVS), whose friction changed according to the load. However, only our fundamental results were previously presented, with detailed analyses not provided. In this study, we first investigated the CAVS friction anisotropy, and demonstrated that the longitudinal direction exhibited a larger ratio of friction change. Next, we proposed a sensible CAVS, capable of providing a variable-friction mechanism, and tested its sensing and control systems in operations requiring switching between sliding and stable-grasping modes. Friction sensing was performed using an embedded camera, and we developed a gripper using the sensible CAVS, considering the CAVS friction anisotropy. In CAVS, the low-friction mode corresponds to a small grasping force, while the high-friction mode corresponds to a greater grasping force. Therefore, by controlling only the friction mode, the gripper mode can be set to either the sliding or stable-grasping mode. Based on this feature, a methodology for controlling the contact mode was constructed. We demonstrated a manipulation involving sliding and stable grasping, and thus verified the efficacy of the developed sensible CAVS.
translated by 谷歌翻译
Our team, Hibikino-Musashi@Home (the shortened name is HMA), was founded in 2010. It is based in the Kitakyushu Science and Research Park, Japan. We have participated in the RoboCup@Home Japan open competition open platform league every year since 2010. Moreover, we participated in the RoboCup 2017 Nagoya as open platform league and domestic standard platform league teams. Currently, the Hibikino-Musashi@Home team has 20 members from seven different laboratories based in the Kyushu Institute of Technology. In this paper, we introduce the activities of our team and the technologies.
translated by 谷歌翻译
尽管沟通延迟可能会破坏多种系统,但大多数现有的多基因轨迹计划者都缺乏解决此问题的策略。最先进的方法通常采用完美的通信环境,这在现实世界实验中几乎是现实的。本文介绍了强大的Mader(RMADER),这是一个分散的异步多轨迹计划者,可以处理代理商之间的通信延迟。通过广播新优化的轨迹和忠实的轨迹,并执行延迟检查步骤,Rmader即使在通信延迟下也能够保证安全。Rmader通过广泛的仿真和硬件飞行实验得到了验证,并获得了100%的无碰撞轨迹生成成功率,表现优于最先进的方法。
translated by 谷歌翻译
我们研究了与中央服务器和多个客户的联合学习多臂强盗设置中最佳手臂识别的问题。每个客户都与多臂强盗相关联,其中每个手臂在具有未知均值和已知方差的高斯分布之后,每个手臂都能产生{\ em I.i.d。} \奖励。假定所有客户的武器集相同。我们定义了两个最佳手臂的概念 - 本地和全球。客户的当地最好的手臂是客户本地手臂中最大的手臂,而全球最佳手臂是所有客户平均平均值最大的手臂。我们假设每个客户只能从当地的手臂上观察奖励,从而估计其当地最好的手臂。客户在上行链路上与中央服务器进行通信,该上行链路需要每个上行链路的使用费用为$ C \ ge0 $单位。在服务器上估算了全球最佳手臂。目的是确定当地最佳武器和全球最佳臂,总成本最少,定义为所有客户的ARM选择总数和总通信成本的总和,但在错误概率上取决于上限。我们提出了一种基于连续消除的新型算法{\ sc fedelim},仅在指数时间步骤中进行通信,并获得高概率依赖性实例依赖性上限,以其总成本。我们论文的关键要点是,对于任何$ c \ geq 0 $,错误概率和错误概率足够小,{\ sc fedelim}下的ARM选择总数(分别为\ the总费用)最多为〜$ 2 $(reves 。〜 $ 3 $)乘以其在每个时间步骤中通信的变体下的ARM选择总数的最大总数。此外,我们证明后者在期望最高的恒定因素方面是最佳的,从而证明{\ sc fedelim}中的通信几乎是无成本的。我们从数值验证{\ sc fedelim}的功效。
translated by 谷歌翻译
提出了一种表示每个数据集的消化信息的方法,以创新思想的帮助以及试图使用或组合数据集创建有价值的产品,服务和业务模型的数据用户的通信。与通过共享属性(即变量)连接数据集的方法相比,此方法通过在现实世界中应活跃的情况下通过事件,情况或操作连接数据集。该方法反映了每个元数据对特征概念的适应性的考虑,这是预期从数据中获得的信息或知识的摘要;因此,数据的用户获得了适合真实企业和现实生活需求的实践知识,以及将AI技术应用于数据的基础。
translated by 谷歌翻译
捍卫深层神经网络免受对抗性示例是AI安全的关键挑战。为了有效地提高鲁棒性,最近的方法集中在对抗训练中的决策边界附近的重要数据点上。但是,这些方法容易受到自动攻击的影响,这是无参数攻击的合奏,可用于可靠评估。在本文中,我们通过实验研究了其脆弱性的原因,发现现有方法会减少真实标签和其他标签的逻辑之间的利润,同时保持其梯度规范非微小值。减少的边缘和非微小梯度规范会导致其脆弱性,因为最大的logit可以轻松地被扰动翻转。我们的实验还表明,logit边缘的直方图具有两个峰,即小和大的logit边缘。从观察结果来看,我们提出了切换单重损失(SOVR),当数据具有较小的logit rumgins时,它会使用单重损失,从而增加边缘。我们发现,SOVR比现有方法增加了logit的利润率,同时使梯度规范保持较小,并且在针对自动攻击的鲁棒性方面超越了它们。
translated by 谷歌翻译
室内环境中的热舒适感会对乘员的健康,福祉和表现产生巨大影响。鉴于对能源效率和实现智能建筑的关注,机器学习(ML)越来越多地用于数据驱动的热舒适度(TC)预测。通常,提出了用于空调或HVAC通风建筑物的基于ML的解决方案,这些模型主要是为成年人设计的。另一方面,在大多数国家 /地区,自然通风(NV)的建筑物是常态。它们也是节能和长期可持续性目标的理想选择。但是,NV建筑物的室内环境缺乏热调节,并且在空间环境中差异很大。这些因素使TC预测极具挑战性。因此,确定建筑环境对TC模型性能的影响很重要。此外,需要研究跨不同NV室内空间的TC预测模型的概括能力。这项工作解决了这些问题。数据是通过在5个自然通风的学校建筑中进行的为期一个月的实地实验,涉及512名小学生。空间变异性对学生舒适度的影响通过预测准确性的变化(高达71%)来证明。还通过特征重要性的变化来证明建筑环境对TC预测的影响。此外,对儿童(我们的数据集)和成人(ASHRAE-II数据库)进行了模型性能的空间变异性比较分析。最后,评估了NV教室中热舒适模型的概括能力,并强调了主要挑战。
translated by 谷歌翻译